Abstract
Long-time low-temperature sous-vide cooking of meat enables the chef to precisely and robustly reach a desired gastronomic outcome. In long-time low-temperature sous-vide cooking, time and temperature can be used as independent parameters to control the outcome. From a scientific point of view, this raises the question how different sensory properties of meat respond to time and temperature and the nature of the underlying processes. Sensory properties of beef cooked at different combinations of low temperatures and long times were found to show three different time-temperature behaviours. By means of GEneralised Multiplicative ANalysis of VAriance (GEMANOVA), the behaviour of 18 descriptors could be reduced to three common time-temperature behaviours. This resulted in three groups of sensory descriptors: group A where temperature and time dependency strongly affect descriptors in the same direction, group B where temperature strongly and time less strongly affect descriptors in opposite directions, and group C where temperature and only to a small degree time affect descriptors in the same direction. The underlying physical and chemical properties in these groups may be classified as depending on their response to time and temperature. Group A, consisting of mainly aroma and flavour descriptors but also juiciness, showed mainly kinetic nature; group B, consisting of texture descriptors (exemplified by tenderness), showed mostly kinetic nature as well; whereas group C, best exemplified by pink colour, showed little dependency on time and thus mostly reflected the effect of temperature. The results indicate that three different underlying main phenomena are responsible for the changes in the sensory properties during long-time low-temperature cooking of beef.
Highlights
Have you ever noticed how many people ask for a Bloody Mary or tomato juice from the drinks trolley on airplanes? The air stewards have, and when you ask the people who order, they will tell you that they rarely order such a drink at any other time
Researchers have long suspected that loud noise might interfere with an individual’s ability to taste the flavour of food [1]
More recent research has clearly demonstrated that loud noise can suppress the perception of certain basic tastes [3]
Summary
“A loud noise, for instance, may prevent entirely our ability to smell or taste, yet softly played dinner music can create an environment favourable for elegant dining.” ([1] p. 7). The hypothesis that background noise might not impact on the perception of umami is supported by the results of some of the earliest research to have studied the impact of sound on taste/flavour perception [2] It would be consistent with anecdotal reports from those who test airline food for some of the world’s biggest airlines [8]. The latest research from Obrist et al [27] has demonstrated that umami appears to be special amongst the five basic tastes in being rated as the most intense, and even after matching for intensity effects, gives rise to a sensation that lingers for longer than any of the other tastes (Figure 3) This representation of taste experiences would support the idea that monosodium glutamate, when combined with other tastes, has the power to enhance them [7] or maybe even ‘lift up’ overall taste experiences, in particular with loud ambient noise. We would certainly welcome the results of such a study
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.