Abstract

AbstractWe prove the instability of the Couette flow if the disturbances is less smooth than the Gevrey space of class 2. This shows that this is the critical regularity for this problem since it was proved in [5] that stability and inviscid damping hold for disturbances which are smoother than the Gevrey space of class 2. A big novelty is that this critical space is due to an instability mechanism which is completely nonlinear and is due to some energy cascade. © 2023 The Authors. Communications on Pure and Applied Mathematics published by Wiley Periodicals LLC.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.