Abstract

We investigate the long-time evolution of magnetic fields generated by the two-stream instability at ultra- and subrelativistic astrophysical collisionless shocks. Based on three-dimensional particle-in-cell (PIC) simulation results, we introduce a two-dimensional toy model of interacting current filaments. Within the framework of this model, we demonstrate that the field correlation scale in the region far downstream of the shock grows nearly as the light crossing time, λ(t) ~ ct, thus making the diffusive field dissipation inefficient. The obtained theoretical scaling is tested using numerical PIC simulations. This result extends our understanding of the structure of collisionless shocks in gamma-ray bursts and other astrophysical objects.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.