Abstract

Evolution of the charged grains in a two-dimensional dusty plasma under a spatially harmonic external force, in particular, their long-time behaviors after the force has been withdrawn, is studied by using molecular dynamics simulation. Under an external force and a grain–grain interaction force, initially homogeneously distributed grains can reach a quasi-stationary state in the form of a disk crystal. After the external force is withdrawn, the disk moves initially with its size and shape nearly unchanged until it rapidly stops moving, and eventually the disk grain rotates like a vortex. The time needed to reach the final state increases with the strength of the initial external force increasing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.