Abstract
The Nernst-Planck-Stokes (NPS) system models electroconvection of ions in a fluid. We consider the system, for two oppositely charged ionic species, on three dimensional bounded domains with Dirichlet boundary conditions for the ionic concentrations (modelling ion selectivity), Dirichlet boundary conditions for the electrical potential (modelling an applied potential), and no-slip boundary conditions for the fluid velocity. In this paper, we obtain quantitative bounds on solutions of the NPS system in the long time limit, which we use to prove (1) the existence of a compact global attractor with finite fractal (box-counting) dimension and (2) space-time averaged electroneutrality ρ ≈ 0 \rho \approx 0 in the singular limit of Debye length going to zero, ϵ → 0 \epsilon \to 0 .
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.