Abstract
We provide an accurate description of the long time dynamics of the solutions of the generalized Korteweg-De Vries (gKdV) and Benjamin-Ono (gBO) equations on the one dimension torus, without external parameters, and that are issued from almost any (in probability and in density) small and smooth initial data. We stress out that these two equations have unbounded nonlinearities. In particular, we prove a long-time stability result in Sobolev norm: given a large constant r and a sufficiently small parameter $\epsilon$, for generic initial datum u(0) of size $\epsilon$, we control the Sobolev norm of the solution u(t) for times of order $\epsilon$^{--r}. These results are obtained by putting the system in rational normal form : we conjugate, up to some high order remainder terms, the vector fields of these equations to integrable ones on large open sets surrounding the origin in high Sobolev regularity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.