Abstract

In this paper, we develop two stochastic mussel-algae models: one is autonomous and the other is periodic. For the autonomous model, we provide sufficient conditions for the extinction, nonpersistent in the mean and weak persistence, and demonstrate that the model possesses a unique ergodic stationary distribution by constructing some suitable Lyapunov functions. For the periodic model, we testify that it has a periodic solution. The theoretical findings are also applied to practice to dissect the effects of environmental perturbations on the growth of mussel.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.