Abstract
We study the long-time behavior as time tends to infinity of globally bounded strong solutions to certain integro-differential equations in Hilbert spaces. Based on an appropriate new Lyapunov function and the Łojasiewicz–Simon inequality, we prove that any globally bounded strong solution converges to a steady state in a real Hilbert space.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.