Abstract
We study the long-time behavior of solutions to quasilinear doubly degenerate parabolic problems of fourth order. The equations model, for instance, the dynamic behavior of a non-Newtonian thin-film flow on a flat impermeable bottom and with zero contact angle. We consider a shear-rate dependent fluid the rheology of which is described by a constitutive power law or Ellis law for the fluid viscosity. In all three cases, positive constants (i.e., positive flat films) are the only positive steady-state solutions. Moreover, we can give a detailed picture of the long-time behavior of solutions with respect to the -norm. In the case of shear-thickening power-law fluids, one observes that solutions which are initially close to a steady state converge to equilibrium in finite time. In the shear-thinning power-law case, we find that steady states are polynomially stable in the sense that, as time tends to infinity, solutions which are initially close to a steady state converge to equilibrium at rate for some . Finally, in the case of an Ellis fluid, steady states are exponentially stable in .
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.