Abstract

In this paper we investigate the large-time behavior of strong solutions to the one-dimensional fourth order degenerate parabolic equation u t =−(u u xxx ) x , modeling the evolution of the interface of a spreading droplet. For nonnegative initial values u 0(x)∈H 1(ℝ), both compactly supported or of finite second moment, we prove explicit and universal algebraic decay in the L 1-norm of the strong solution u(x,t) towards the unique (among source type solutions) strong source type solution of the equation with the same mass. The method we use is based on the study of the time decay of the entropy introduced in [13] for the porous medium equation, and uses analogies between the thin film equation and the porous medium equation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.