Abstract

Size determination of the long terminal repeat (LTR) of an early (1985) and a more recent (1993) passage of wild-type human foamy virus (HFV) revealed that the virus has undergone substantial deletions in the U3 region upon replication in tissue culture. Two LTR deletion variants (HSRV1 and 2) have been characterized in the past and used to construct molecular clones which are replication competent in cell culture. We now report the molecular cloning, sequencing, and biological characterization of an HFV genome with full-length LTR (pHFV2). Sequence analysis revealed that the deletions in HSRV1 and 2 are nonrandom and probably occurred by misalignment during reverse transcription. The comparative analysis of HFV2 and the variant with the largest U3 deletion, HSRV2, revealed a differential ability to replicate in human cell cultures. While HSRV2 replicated faster in diploid human fibroblasts, cells which have been used extensively for amplification of HFV in the past, replication of HFV2 was faster in a lymphoblastoid cell line. Reporter gene assays indicated that the cell-type specific ability of the LTRs to respond to the viral transcriptional transactivator may be a likely reason for the different growth properties of both viruses and for the occurrence of the HFV U3 deletions. In foamy virus-infected chimpanzees only the full-length type of LTR was observed; however, the HSRV1 deletion variant was detected as the dominating virus in an accidentally HFV-infected human.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.