Abstract

While many freshwater lakes have witnessed a rapid increase in surface water temperatures, the trends in subsurface water temperatures are not well-understood. This study explored the long-term subsurface water temperature change and its connection to climate change and human activities in Seneca Lake. Utilizing linear regression and the Theil-Sen estimator, the study identified a significant monotonic temperature trend in the subsurface water. Principal component and contribution analyses revealed that climate changes, particularly air warming, were more critical in explaining water temperature patterns, and human activities such as land cover change could exacerbate the impact of climate change. Using remotely sensed surface water temperature data, the study found a significant positive correlation between thermal pollution and water temperatures in the northern region of the lake, and after incorporating control variables, the regression analysis suggested that the adverse effects of thermal pollution are primarily confined to the area adjacent to the power plant. This research can offer fresh insights into lake ecology improvement and management strategies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.