Abstract
Water quality related to non-point source pollution continues to pose challenges in agricultural landscapes, despite two completed cycles of Water Framework Directive actions by farmers and landowners. Future climate projections will cause new challenges in landscape hydrology and subsequently, the potential responses in water quality. Investigating the nutrient trends in surface waters and studying the efficiency of mitigation measures revealed that loads and measures are highly variable both spatially and temporally in catchments with different agro-climatic and environmental conditions. In Sweden, nitrogen and phosphorus loads in eight agricultural catchments (470–3300 ha) have been intensively monitored for >20 years. This study investigated the relationship between precipitation, air temperature, and discharge patterns in relation to nitrogen (N) and phosphorus (P) loads at catchment outlets. The time series data analysis was carried out by integrating Mann-Kendall test, Pettitt break-points, and Generalized Additive Model. The results showed that the nutrient loads highly depend on water discharge, which had large variation in annual average (158–441 mm yr−1). The annual average loads were also considerably different among the catchments with total N (TN) loads ranging from 6.76 to 35.73 kg ha−1, and total P (TP) loads ranging from 0.11 to 1.04 kg ha−1. The climatic drivers were highly significant indicators of nutrient loads but with varying degree of significance. Precipitation (28–962 mm yr−1) was a significant indicator of TN loads in five catchments (loamy sand/sandy loam) while annual average temperature (6.5–8.7 °C yr−1) was a significant driver of TN loads in six out of eight catchments. TP loads were associated with precipitation in two catchments and significantly correlated to water discharge in six catchments. Considering the more frequent occurrence of extreme weather events, it is necessary to tailor N and P mitigation measures to future climate-change features of precipitation, temperature, and discharge.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.