Abstract

Evaluating long-term drivers of foraging ecology and population productivity is crucial for providing ecological baselines and forecasting species responses to future environmental conditions. Here, we examine the trophic ecology and habitat use of North Atlantic leatherback turtles (St. Croix nesting population) and investigate the effects of large-scale oceanographic conditions on leatherback foraging dynamics. We used bulk and compound-specific nitrogen isotope analysis of amino acids (CSIA-AA) to estimate leatherback trophic position (TP) over an 18-year period, compare these estimates with TP estimates from a Pacific leatherback population, and elucidate the pre-nesting habitat use patterns of leatherbacks. Our secondary objective was to use oceanographic indices and nesting information from St. Croix leatherbacks to evaluate relationships between trophic ecology, nesting parameters, and regional environmental conditions measured by the North Atlantic Oscillation (NAO) and Atlantic Multidecadal Oscillation. We found no change in leatherback TP over time and no difference in TP between Atlantic and Pacific leatherbacks, indicating that differences in trophic ecology between populations are an unlikely driver of the population dichotomy between Pacific and Atlantic leatherbacks. Isotope data suggested that St. Croix leatherbacks inhabit multiple oceanic regions prior to nesting, although, like their conspecifics in the Pacific, individuals exhibit fidelity to specific foraging regions. Leatherback nesting parameters were weakly related to the NAO, which may suggest that positive NAO phases benefit St. Croix leatherbacks, potentially through increases in resource availability in their foraging areas. Our data contribute to the understanding of leatherback turtle ecology and potential mechanistic drivers of the dichotomy between populations of this protected species.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.