Abstract

Relationships between catchment characteristics of 31 alpine lakes and observed trends in lake water concentrations of nitrate were evaluated in the Tatra Mountains. Nitrate concentrations increased from background levels <4 μeq l −1 in the 1930s to maxima (up to 55 μeq l −1) in the 1980s, after which they declined to 4–44 μeq l −1 by the late 1990s. In-lake nitrate concentrations correlated negatively with parameters characterising catchment-weighted mean pools (CWM; kg m −2) of soil, i.e. with percent land cover with meadow and soil depth, and positively with grade of terrain, annual precipitation, and the highest elevation in the catchment. The CWM pool of soil and annual precipitation explained together 65% of the current spatial variability in nitrate concentrations. Denitrification and direct N deposition on surface area explained 14% of the variability. Increased atmospheric N deposition and declining net N retention in soils were responsible for long-term changes in nitrate concentrations. Long-term decline in %N retention in soils decreased along with the estimated decline in C:N ratios (from 21 to 18 on average during the last 70 years). An empirical model linking nitrate concentrations in different types of alpine Tatra Mountain lakes to four independent variables (CWM soil pool, annual precipitation, increased N deposition, and average trend in soil C:N ratios) explained 80% of the observed spatial and temporal nitrate variability over the period 1937–2000.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.