Abstract
BackgroundSympathetic overactivation and neuroinflammation in the paraventricular nucleus (PVN) are crucial factors in post–myocardial infarction (MI) cardiac remodeling and ventricular arrhythmias (VAs). Prior study has indicated that low-intensity focused ultrasound stimulation could attenuate sympathetic neuroinflammation within the PVN to prevent the occurrence of VAs in an acute MI model. Meanwhile, the cGAS-STING pathway has shown potential to ameliorate the neuroinflammatory response. However, the effect and mechanisms of long-term transcranial ultrasound stimulation (LTUS) for modulating neuroinflammation in the chronic stage of MI remain unclear. ObjectiveThis study aimed to ascertain whether LTUS could mitigate post-MI neuroinflammation and improve cardiac arrhythmia and remodeling through the cGAS-STING pathway. MethodsThirty-six SD rats were equally randomized to the sham group (pseudo-MI modeling), chronic MI group (MI modeling), and LTUS group (MI modeling and long-term ultrasound stimulation). Transcranial ultrasound stimulation (15 min/d) was conducted on the PVN for 4 consecutive weeks. After 4-week intervention, echocardiography, electrophysiologic experiments, and histopathologic staining were performed to assess the role of LTUS on post-MI neuroinflammation and cardiac remodeling. ResultsThe results indicated that LTUS significantly facilitated microglial M1 to M2 polarization through the cGAS-STING signaling pathway within the PVN. Furthermore, LTUS inhibited MI-induced sympathetic neuroinflammation, thereby improving cardiac dysfunction, ameliorating cardiac remodeling, and reducing VA inducibility. ConclusionLong-term ultrasound stimulation of the PVN was found to alleviate post-MI neuroinflammation and to improve cardiac remodeling, which might inspire novel insights and clinical strategies for noninvasive neuromodulation and the treatment of post-MI VAs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.