Abstract

Dobson and Brewer spectrophotometers are the standard instruments for ground‐based total ozone monitoring under the World Meteorological Organization's Global Atmosphere Watch program. Both types of instruments have been simultaneously used at Arosa station (Switzerland) since 1988; presently two Dobson and three Brewer instruments (one of which is type Mark III) are in operation. The large data set of quasi‐simultaneous measurements (defined here as observations performed less than 10 min apart) allows for the determination of both inter‐ and intrainstrumental precision. The results for one standard deviation of total ozone are ±0.5% for Dobson standard wavelength pair observations and ±0.15% for Brewer total ozone measurements. To transform Dobson data into Brewer total ozone observations, empirical transfer functions are used to describe the observed difference in seasonal variations of total ozone data derived from the two types of instruments (amounting to a seasonal amplitude of approximately 2% with maximum deviation in winter). The statistical model (applied to quasi‐simultaneous measurements) includes the ozone effective temperature and the air mass multiplied by total ozone (ozone slant path) as explanatory variables; it removes the seasonal cycle in the difference and it allows the significance of the proxies introduced and systematic errors in the data to be determined. However, even when these transfer functions are applied, a 3% drift over about a 10 year period (1988–1997) between Arosa's Dobson and Brewer derived total ozone data series remains unexplained, adding to the model an aerosol proxy for which only part of the drift can be removed (related to the period 1992–1996).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call