Abstract
The purpose of this experimental study is to determine the thermal and chemical reliability of organic phase change materials (O-PCMs) viz. paraffin, palmitic acid, and myristic acid for 1500 accelerated melt/freeze. The differential scanning calorimeter (DSC) was used to measure the melting temperature and the latent heat of fusion at zeroth cycle and after 100th, 500th, 1000th, and 1500th thermal cycles. The DSC results show the gradual changes in the value of thermophysical properties of all the tested PCMs. The changes in melting temperature of paraffin, palmitic acid, and myristic acid have been found in the range of +0.72 to +3.27, −0.29 to +1.76, and −2.09 to +1.5 °C, respectively, and the latent heat of fusion in −9.8 to 14.2, 3.3 to 17.8, and 0.9 to 9.7 %, respectively. The Fourier transform and infrared spectroscopy (FT-IR) technique was used to investigate the changes in the compositional/functional group of the O-PCMs before and after thermal cycles. The FT-IR spectrum confirms the chemical stability during the thermal cycle test. The experimental results show that these organic PCMs possess a good thermal reliability in terms of melting temperature and the latent heat of fusion and chemical stability during thermal cycle testing.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.