Abstract

Since the 1980s, atmospheric deposition acidity has generally decreased in European forest ecosystems. However, at many sites, little or no sign of recovery has been observed yet. Concerns are rising about the sustainability of these ecosystems because of reduced nutrients inputs in atmospheric deposition and the increase in biomass harvesting to supply bio-energy.We used a silver fir plot of the French monitoring network (RENECOFOR, site SP57) typical of the ecosystems on sandstone in the Vosges Mountains, to investigate its functioning and its response facing past and possible future changes. We (1) calculated 12-year-mean “input–output” nutrient budgets, (2) measured the change in soil exchangeable cations and anions, (3) used monitoring data to calibrate a process oriented biogeochemical model, NuCM, that was then used to (4) simulate the consequences of two main scenarios and their combinations: constant or reduced atmospheric deposition, and traditional or whole-tree harvesting.Mean term changes in exchangeable nutrients and input–output budgets showed a loss of exchangeable sulphate and base cations, the level of which depended on the method. This combined efflux induced an acidification of soil solution and an alkalinisation of the soil. The model NuCM was successfully calibrated and scenarios were implemented. A slight recovery was simulated when deposition was maintained constant but combined acid and nutrient atmospheric deposition reduction delayed recovery. Whole-tree harvesting drastically decreased soil fertility compared to traditional silviculture. Hence, biomass harvesting in forests on poor soils may counter recovery in the future.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.