Abstract

Nitrospira are the most widespread and well known nitrite-oxidizing bacteria (NOB) and putatively key nitrite-oxidizers in acidic ecosystems. Nevertheless, their ecology in agriculture soils has not been well studied. To understand the impact of straw incorporation on soil Nitrospira-like bacterial community, a cloned library analysis of the nitrite oxidoreductase gene-nxrB was performed for a long-term rapeseed-rice rotation system. In this study, most members of the Nitrospira-like NOB in the paddy soils from the Wuxue field experiment station were phylogenetically related with Nitrospira lineages II. The Shannon diversity index possessed a decrease trend in the straw applied soils. The relative abundances of 16 OTUs (accounting 72% of the total OTUs, including 11 unique OTUs and 5 shared OTUs) were different between in the straw applied and control soils. These data suggested a selection effect from the long-term straw fertilization. Canonical correspondence analysis data showed that a centralized group of Nitrospira-like NOB OTUs in the community was partly explained by the soil ammonium, nitrate, available phosphorus, and the available potassium. This could suggest that straw fertilization led to the soil Nitrospira-like NOB community shift, which was correlated with the change of available nutrients in the bulk soil.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.