Abstract

Poor dispersibility of carbon nanotubes greatly hinders their practical applications. Herein, a long-term stable dispersion of multiwalled carbon nanotubes (MWCNTs) in peroxydisulfate (PDS) is achieved. MWCNTs at 40mgL-1 are completely dispersed by PDS upon ultrasonication (US/PDS) within 64min and a stable dispersion is maintained at least 20 days. Mechanistically, US created defects on the nanomaterial and PDS-origin free radicals attacked these defects to introduce O-containing moieties (─OH and ─COOH). Interestingly, dispersion efficiency of MWCNTs by US/PDS initially at pH 7 and 3.8 is comparable, but lower than that initially at pH 12. Both •OH and SO4 •- are produced under alkaline condition, while SO4 •- is the dominant free radicals initially at pH 7 and 3.8 during the whole dispersion period. Stronger dispersion of MWCNTs initially at pH 12 resulted from greater amounts of O-containing moieties mainly in ─OH (46.32%) rather than ─COOH (24.19%) form. This differential more strongly promotes MWCNTs-water interaction via hydrogen bonding, thereby enhancing the dispersion. Notably, no significant mass loss of MWCNTs occurred during dispersion. Overall, the developed method achieves long-term stable dispersion of MWCNTs in a manner that can significantly extend their applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.