Abstract

The long-term stability of a dye-sensitized solar cell (DSSC) is a key issue for upscaling and commercialization of this technology. It is well-known that gel electrolytes can improve the long-term stability and allow easy DSSC manufacturing. However, there is limited knowledge on the long-term stability of cobalt-based gel electrolytes and also how this stability is affected when applying different dye sensitizers. Moreover, long-term stability studies have been done with no, or an imperfect, sealing. In this work we investigated the performance and the stability of cobalt-based polymer gel electrolytes using devices properly sealed. Here, two different dyes, an organic and a ruthenium dye, were selected to investigate the device’s performance. The cobalt liquid electrolyte was gelled with a PEO-based terpolymer (PEO-EM-AGE) and compared to its liquid counterpart. After 1000 h, the efficiencies of the liquid- and gel-based solar cells with the ruthenium dye were statistically similar to each other. On th...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.