Abstract

The Vietnamese Mekong Delta is among the most vulnerable deltas to climate–related hazards across the globe. In this study, the annual mean and extreme temperatures from 11 meteorological stations over the Vietnamese Mekong Delta were subjected to normality, homogeneity and trend analysis by employing a number of powerful statistical tests (i.e. Shapiro–Wilk, Buishand Range test, classical/modified Mann–Kendall test and Sen’s slope estimator). As for spatio–temporal assessment, the well–known (0.5° × 0.5°) high–resolution gridded dataset (i.e. CRU TS4.02) was also utilized to examine trend possibilities for three different time periods (i.e. 1901–2017, 1951–2017 and 1981–2017) by integrating spatial interpolation algorithms (i.e. IDW and Ordinary Kriging) with statistical trend tests. Comparing the calculated test–statistics to their critical values (a = 0.05), it is evident that most of the temperature records can be considered to be normal and non–homogeneous with respect to normality and homogeneity test respectively. As for temporal trend detection, the outcomes show high domination of significantly increasing trends. Additionally, the results of trend estimation indicate that the magnitude of increase in minimum temperature was mostly greater than mean and maximum ones and the recent period (1981–2017) also revealed greater increasing rates compared to the entire analyzed period and second half of the 20th century. In general, these findings yield various evident indications of warming tendency in the Vietnamese Mekong Delta over the last three decades.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call