Abstract

This paper reports a new study where relatively long-term tests of about a 1000 h are performed on several planar anode-supported solid oxide fuel cells. The cell electrochemical behaviors are studied by using voltage-current density measurement, electrochemical impedance spectroscopy, scanning electron microscopy, and energy-dispersive X-ray spectroscopy. The cell total polarization obtained from electrochemical impedance spectroscopy results is shown to be consistent with the area-specific resistance calculated from the voltage-current density curve over the course of the test. In addition, a four-constant phase element model is used to analyze the cell components resistances at different intervals over the lifetime of the test. Scanning electron microscopy and energy-dispersive X-ray spectroscopy are used postmortem to determine if any damages occurred to the cells and to determine if any change in composition occurred to the lanthanum strontium cobalt ferrite cathode. This study shows that the tested cells remain stable with a relatively small increase in the cell total polarization but with no increase in ohmic resistance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.