Abstract

Limb girdle muscular dystrophy (LGMD) describes a group of inherited diseases resulting from mutations in genes encoding proteins involved in maintaining skeletal muscle membrane stability. LGMD type-2D is caused by mutations in alpha-sarcoglycan (sgca). Here we describe muscle-specific gene delivery of the human sgca gene into dystrophic muscle using an adeno-associated virus 1 (AAV1) capsid and creatine kinase promoter. Delivery of this construct to adult sgca(-/-) mice resulted in localization of the sarcoglycan complex to the sarcolemma and a reduction in muscle fiber damage. Sgca expression prevented disease progression as observed in vivo by T(2)-weighted magnetic resonance imaging (MRI) and confirmed in vitro by decreased Evan's blue dye accumulation. The ability of recombinant AAV-mediated gene delivery to restore normal muscle mechanical properties in sgca(-/-) mice was verified by in vitro force mechanics on isolated extensor digitorum longus (EDL) muscles, with a decrease in passive resistance to stretch as compared with untreated controls. In summary, AAV/AAV-sgca gene transfer provides long-term muscle protection from LGMD and can be non-invasively evaluated using magnetic resonance imaging.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call