Abstract
This paper extends the long-term factorization of the stochastic discount factor introduced and studied by Alvarez and Jermann (2005) in discrete-time ergodic environments and by Hansen and Scheinkman (2009) and Hansen (2012) in Markovian environments to general semimartingale environments. The transitory component discounts at the stochastic rate of return on the long bond and is factorized into discounting at the long-term yield and a positive semimartingale that extends the principal eigenfunction of Hansen and Scheinkman (2009) to the semimartingale setting. The permanent component is a martingale that accomplishes a change of probabilities to the long forward measure, the limit of T-forward measures. The change of probabilities from the data-generating to the long forward measure absorbs the long-term risk-return trade-off and interprets the latter as the long-term risk-neutral measure.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.