Abstract

Recurrent climate-induced mass-mortalities have been recorded in the Mediterranean Sea over the past 15 years. Cladocora caespitosa, the sole zooxanthellate scleractinian reef-builder in the Mediterranean, is among the organisms affected by these episodes. Extensive bioconstructions of this endemic coral are very rare at the present time and are threatened by several stressors. In this study, we assessed the long-term response of this temperate coral to warming sea-water in the Columbretes Islands (NW Mediterranean) and described, for the first time, the relationship between recurrent mortality events and local sea surface temperature (SST) regimes in the Mediterranean Sea. A water temperature series spanning more than 20 years showed a summer warming trend of 0.06°C per year and an increased frequency of positive thermal anomalies. Mortality resulted from tissue necrosis without massive zooxanthellae loss and during the 11-year study, necrosis was recorded during nine summers separated into two mortality periods (2003–2006 and 2008–2012). The highest necrosis rates were registered during the first mortality period, after the exceptionally hot summer of 2003. Although necrosis and temperature were significantly associated, the variability in necrosis rates during summers with similar thermal anomalies pointed to other acting factors. In this sense, our results showed that these differences were more closely related to the interannual temperature context and delayed thermal stress after extreme summers, rather than to acclimatisation and adaption processes.

Highlights

  • Since the late 20th century, global warming has been enhanced by human activities [1]

  • The polyp mortality was always characterised by direct tissue necrosis without massive loss of zooxanthellae

  • Tissue necrosis began at the basal part of the polyps; in these first stages, the polyps often remained expanded

Read more

Summary

Introduction

Since the late 20th century, global warming has been enhanced by human activities [1] In this ongoing climatic change, climatic models predict that the Mediterranean Sea will be among the regions that are most affected by the warming trend and the increase of extreme events [2,3]. In the summer of 2003, a new mass-mortality episode occurred in NW Mediterranean coastal waters, this time over a larger geographic area [13]. Both events affected over 30 species of benthic invertebrates, mostly cnidarians, sponges and bryozoans [13,14]

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.