Abstract

The climate of the circumpolar Boreal forest is changing rapidly, resulting in a growing frequency of wildfires and changing precipitation patterns. These climate-related stressors may influence the cycling of nutrients within, and overall ecosystem condition of, Boreal watersheds. However, long-term perspectives of concurrent climate-related impacts on the cycling of nutrients in watersheds are rare. We present multi-decadal terrestrial and lake mass budgets of nitrogen, phosphorus and carbon within a headwater Boreal Shield watershed that was recovering from an extensive wildfire while experiencing measureable increases in annual precipitation. We used these budgets to quantify associations between nutrient retention in each ecosystem and changes in metrics defining landscape recovery after wildfire or precipitation. The terrestrial watershed retained over half of all nitrogen and phosphorus delivered to it by the atmosphere. Strong nutrient retention occurred despite ongoing landscape recovery from wildfire, measurable increases in precipitation, a forest tent caterpillar defoliation and rising atmospheric deposition. A downstream headwater lake was also a strong and consistent sink of nitrogen and phosphorus, highlighting a whole-watershed resistance to environmental disturbances. However, carbon was strongly lost downstream from the terrestrial ecosystem in close and positive association with precipitation, resulting in a darkening of the headwater lake over time with implications for the functioning of its ecosystem. Long-term mass budget monitoring of a Boreal catchment has provided insight into the resistances and dynamic changes within a northern watershed exposed to concurrent wildfire and increasing precipitation conditions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call