Abstract

The redox state of a planetary mantle affects its thermal evolution. The redox evolution of lunar mantle, however, remains unclear due to limited oxygen fugacity (fO2) constraints from young lunar samples. Here, we report vanadium (V) oxybarometers on olivine and spinel conducted on 27 Chang’e-5 basalt fragments from 2.0 billion years ago. These fragments yield an average fO2 of ΔIW -0.84 ± 0.65 (2σ), which closely aligns with the Apollo samples from 3.6–3.0 billion years ago. This temporal uniformity indicates the lunar mantle remained reduced. This observation reveals that the processes responsible for oxidizing mantles of Earth and Mars either did not occur or had negligible oxidizing effects on the Moon. The long-term reduced mantle may lead to a distinctive volatile degassing pathway for the Moon. It could also make the lunar mantle more difficult to melt, preventing internal heat dissipation and consequently resulting in a slow cooling rate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.