Abstract

Various portable monitors have been used to quantify physical activity but most rely on detecting limb movement with a sensor rather than measuring muscle activity. Our first goal was to design and validate a portable system for recording surface electromyographic activity (EMG) from eight muscles over 24 h. The modular system includes: (1) preamplifiers that filter and amplify signals; (2) a preprocessor unit for further filtering and amplification, signal offset and power supply modification; (3) a data-logger for analog-to-digital conversion; a flash memory card for data storage and (4) a rechargeable battery. The equipment samples EMG at 1000 Hz, has a resolution of 2.6 μV and records signals up to 10 mV. The built-in analog filters create a bandwidth appropriate for surface EMG. Our second aim was to test the system biologically by recording EMG from able-bodied and spinal cord injured participants. Modifications were made to electrodes for remote preamplifier placement, and to the battery connection after pilot testing. Thereafter, 31 consecutive 24-h EMG recordings were successful. Both the engineering and biological validation of this system establishes it as a valuable tool for measuring physical activity from different muscles in real-world environments whether individuals have an intact or damaged nervous system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.