Abstract
AbstractPhytochromes (Phys) are biliproteins that regulate light responses in plants, fungi, and microorganisms through photoconversion between a dark state and a photoproduct. Thermal reversion of the photoproduct is an intrinsic property of all Phys, typically occurring on a timescale of seconds to days. Despite methodological advances, the structural and spectroscopic determination of short‐lived photoproducts has proven challenging. We herein present an innovative approach for photoproduct stabilisation by incorporating the protein into trehalose glasses (TGs). The resulting Phy–trehalose matrices were investigated by UV/Vis absorption and solid‐state NMR spectroscopies. Our results demonstrate that the TGs strongly inhibit thermal reversion of the incorporated Phy proteins for periods as long as several weeks at room temperature (RT), during which the proteins fully sustain their native structures and spectral and biochemical properties. This sample preparation approach is beneficial for revealing bona fide structure/function relationships of short‐lived photoproducts that are otherwise not accessible, thus paving the way towards a deeper molecular understanding of the diversified spectral properties of Phys. Our results also provide new insights into the molecular mechanism of trehalose bioprotection.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.