Abstract
By imaging neuronal excitation in rat spinal cord slices with a voltage-sensitive dye, we examined the role of glial cells in the P2X receptor agonist alphabeta-methylene ATP (alphabetameATP)-triggered long-term potentiation (LTP) in the dorsal horn. Bath application of alphabetameATP potentiated neuronal excitation in the superficial dorsal horn. The potentiation was inhibited in the presence of the P2X receptor antagonists TNP-ATP, PPADS and A-317491, and was not induced in slices taken from rats neonatally treated with capsaicin. These results suggest that alphabetameATP acts on P2X receptors, possibly P2X(3) and/or P2X(2/3), in capsaicin-sensitive primary afferent terminals. Furthermore, the potentiation was inhibited by treatment with the glial metabolism inhibitor monofluoroacetic acid. Results obtained with the p38 mitogen-activated protein kinase (p38 MAPK) inhibitor SB203580, tumour necrosis factor-alpha (TNF-alpha) and interleukin (IL)-6, and antibodies to TNF-alpha and IL-6, as well as by double immunolabelling of activated p38 MAPK with markers of astrocytes and microglia, demonstrated that alphabetameATP activated p38 MAPK in astrocytes, and that the presence of proinflammatory cytokines and p38 MAPK activation were necessary for the induction of alphabetameATP-triggered LTP. These findings indicate that glial cells contribute to the alphabetameATP-induced LTP, which might be part of a cellular mechanism for the induction of persistent pain.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.