Abstract
Neurons in the superior cervical ganglia (SCG) are classified as rostral and caudal according to their regional locations. Although diverse phenotypes have been reported for these two subpopulations, differences in neuroplasticity, like long-term potentiation (LTP), have not been characterized. Here, we explored possible regional differences of LTP expression in rostral and caudal neurons of the SCG in control rats, Wistar and Wistar Kyoto (WKy), and in the spontaneously hypertensive rats (SHR) as a model of hypertension. We characterized the expression of gLTP evoked by a tetanic train (40 Hz, 3 s) in an in vitro SCG preparation. gLTP was recorded in rostral and caudal neurons at 8-weeks-old (wo) in Wistar rats, 6-wo and 12-wo in SHR and WKy rats. We found that gLTP was differentially expressed; gLTP was larger in caudal neurons in Wistar and adult WKy rats. In adult 12-wo hypertensive SHR, gLTP was expressed in caudal but not in rostral neurons. In contrast, in 6-wo pre-hypertensive SHR, gLTP was expressed in rostral but not in caudal neurons; while in 6-wo WKy, gLTP was expressed in caudal but not in rostral neurons. The lack of gLTP expression in caudal neurons of 6-wo SHR was not due to a GABAergic modulation because several GABA-A receptor antagonists failed to unmask gLTP. Data show that neuroplasticity, particularly gLTP expression, varied according to the ganglionic region. We propose that differential regional expression of gLTP may be correlated with selective innervation on different target organs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.