Abstract

HypothesisOne of the main assets of crosslinked polymer-shelled microbubbles (MBs) as ultrasound-active theranostic agents is the robustness of the shells, combined with the chemical versatility in modifying the surface with ligands and/or drugs. Despite the long shelf-life, subtle modifications occur in the MB shells involving shifts in acoustic, mechanical and structural properties. ExperimentsWe carried out a long-term morphological and acoustic evolution analysis on elastomeric polyvinyl-alcohol (PVA)-shelled MBs, a novel platform accomplishing good acoustic and surface performances in one agent. Confocal laser scanning microscopy, acoustic spectroscopy and AFM nanomechanics were integrated to understand the mechanism of PVA MBs ageing. The changes in the MB acoustic properties were framed in terms of shell thickness and viscoelasticity using a linearised oscillation theory, and compared to MB morphology and to nanomechanical analysis. FindingsWe enlightened a novel, intriguing ageing time evolution of the PVA MBs with double behaviour with respect to a crossover time of ∼50 days. Before, significant changes occur in MB stiffness and shell thickness, mainly due to a massive release of entangled PVA chains. Then, the MB resonance frequency increases together with shell thickening and softening. Our benchmark study is of general interest for emerging viscoelastomeric bubbles towards personalised medicine.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call