Abstract

Wildlife populations can respond to changes in climate conditions by either adapting or moving to areas with preferred climate regimes. We studied nesting responses of two bird species, western bluebird (Sialia mexicana) and ash-throated flycatcher (Myiarchus cinerascens), to changing climate conditions (i.e., rising temperatures and increased drought stress) over 21 years in northern New Mexico. We used data from 1649 nests to assess whether the two species responded to changing climate conditions through phenological shifts in breeding time or shifts in nesting elevation. We also examined changes in reproductive output (i.e., clutch size). Our data show that western bluebirds significantly increased nesting elevation over a 19-year period by approximately 5 m per year. Mean spring temperature was the best predictor of western bluebird nesting elevation. Higher nesting elevations were not correlated with hatch dates or clutch sizes in western bluebirds, suggesting that nesting at higher elevations does not affect breeding time or reproductive output. We did not observe significant changes in nesting elevation or breeding dates in ash-throated flycatchers. Nesting higher in elevation may allow western bluebirds to cope with the increased temperatures and droughts. However, this climate niche conservatism may pose a risk for the conservation of the species if climate change and habitat loss continue to occur. The lack of significant changes detected in nesting elevation, breeding dates, and reproductive output in ash-throated flycatchers suggests a higher tolerance for changing environmental conditions in this species. This is consistent with the population increases reported for flycatchers in areas experiencing dramatic climate changes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call