Abstract

The effective population size (Ne) is a crucial characteristic of numerically small populations, positively correlated with their ability to persist in a changing environment and to evolve. Information about the lower bounds of Ne of natural populations is both theoretically interesting and practically important. We studied Kildin cod, an isolated population of Atlantic cod Gadus morhua from an ecologically marginal habitat (marine lake), comparing it with the parental Barents Sea population by a set of 20 microsatellite and protein loci. Overall, the genetic variability in Kildin cod was low (mean allelic richness and heterozygosity: Kildin cod 1.6, 0.26; marine cod 11.6, 0.73). We detected a single locus, the glucose-6-phosphate isomerase-1, which demonstrated a unique variation in the lake. At this locus, about 75 % of the lacustrine fishes carried an allele not found in the sea. The obtained genetic estimates of Ne of Kildin cod (less than a hundred) were much smaller than what is considered as the smallest Ne of a viable population. At the same time, Kildin cod is known to be healthy and productive. Based on the results of bottleneck tests, we hypothesize that Kildin cod has experienced founder-flush dynamics that lead to loss of genetic variation during the founder phase(s) and purging of genetic load and the rise of adaptation during flush phase(s).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.