Abstract

A comprehensive study was conducted to examine the performance and possible changes in the effectiveness of landfill surface covers. Three different profiles of mineral landfill caps were examined. The results of precipitation and flow measurements show distinct seasonal differences which are typical for middle-European climatic conditions. In the case of the simple landfill cap design consisting of a thick layer of loamy sand, approximately 100-200 L m(-2) of annual seepage into the landfill body occurs during winter season. The three-layer systems of the two other test fields performed much better. Most of the water which percolated through the top soil profile drained sideways in the drainage layer. Only 1-3% of precipitation percolated through the sealing layer. The long-term effectiveness of the mineral sealing layer depended on the ability of the top soil layer to protect it from critical loss of soil water/critical increase of suction. In dry summers there was even a loss in soil water content at the base of the 2.0 m thick soil cover. The results of this study demonstrate the importance of the long-term aspect when assessing the effectiveness of landfill covers: The hydraulic conductivity at the time of construction gives only an initial (minimum) value. The hydraulic conductivity of the compacted clay layer or of the geosynthetic clay liner may increase substantially, if there is no long-lasting protection against desiccation (by a thick soil cover or by a geomembrane). This has to be taken into account in landfill cover design.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call