Abstract

High yields and environment-related issues because of over-fertilization in rice (Oryza sativa L.) production is a major concern in China. Partial replacement of mineral fertilizer (MF) with organic matter is considered a win–win approach for resource-saving and environmentally friendly rice production. Here, we examined the effects of reduced MF and in situ crop residue on the rice yield and soil fertility in the long term. A 27-year field experiment (a randomized block design with three replicates) in subtropical China was conducted to test the feasibility of the substitution in a double rice paddy ecosystem. The treatments were CT (no fertilizer application considered as control), NPK (mineral fertilizer N, P, and K), and RFC (reduced MF and in situ crop residue to supplement the reduced NPK dose). The crop residue included half of the rice straw and green manure contents, which were retained in situ in the RFC treatment. The RFC maintained the same rice yield and soil fertility levels as NPK. In general, soil organic carbon (SOC) and total nitrogen (TN) content in RFC increased by 10.3% –20.8%, and 7.5% –28.0%, respectively, than that in NPK from the 5th to the 25th years. There was no significant difference in the content and net accumulation of SOC, TN, and TP and soil available nutrients between the RFC and NPK treatments after 25 years. The average annual yields were 9690 and 9872 kg ha−1 for the NPK and RFC treatments, respectively. There was no difference in the yield of the first, second, and annual rice crops between RFC and NPK in most years (six of the fifty-four seasons showed a significant difference). RFC increased the partial factor productivity (PFP), agronomic efficiency (AE) of MF, and yield stability (CV) (p < 0.05). Positive nutrient balance and a reduced loss of nutrients are evident reasons for achieving better indicators (PFP, AE, and CV) for nutrient compensation and organic nutrient utilization in the RFC treatment. The partial replacement of MF with in situ crop residue retention, is a simple and efficient way to maintain the soil fertility and rice yield as NPK in southern China.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.