Abstract
Although various artificial tracheas have been developed, none have proven satisfactory for clinical use. In-body tissue architecture (IBTA) has enabled us to produce collagenous tissues with a wide range of shapes and sizes to meet the needs of individual recipients. In the present study, we investigated the long-term outcomes of patch tracheoplasty using an IBTA-induced collagenous tissue membrane ("biosheet") in a beagle model. Nine adult female beagles were used. Biosheets were prepared by embedding cylindrical molds assembled with a silicone rod and a slitting pipe into dorsal subcutaneous pouches for 2 months. The sheets were then implanted by patch tracheoplasty. An endoscopic evaluation was performed after 1, 3, or 12months. The implanted biosheets were harvested for a histological evaluation at the same time points. All animals survived the study. At 1 month after tracheoplasty, the anastomotic parts and internal surface of the biosheets were smooth with ciliated columnar epithelium, which regenerated into the internal surface of the biosheet. The chronological spread of chondrocytes into the biosheet was observed at 3 and 12months. Biosheets showed excellent performance as a scaffold for trachea regeneration with complete luminal epithelium and partial chondrocytes in a 1-year beagle implantation model of patch tracheoplasty.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.