Abstract

During irradiation tests at high temperature failure of commercial Inconel 600 sheathed thermocouples is commonly encountered. As instrumentation, in particular thermocouples are considered safety-relevant both for irradiation tests and for commercial reactors, JRC and THERMOCOAX joined forces to solve this issue by performing out-of-pile tests with thermocouples mimicking the environment encountered by high temperature reactor (HTR) in-core instrumentation. The objective was to screen innovative sheathed thermocouples which would consecutively be tested under irradiation. Two such screening tests have been performed in high temperature environment (i.e. temperature in the range 1100–1150°C) with purposely contaminated helium atmosphere (mainly CH4, CO, CO2, O2 impurities) representative for high temperature reactor carburizing atmospheres. The first set of thermocouples embedded in graphite (mainly conventional N type thermocouples and thermocouples with innovative sheaths) was tested in a dedicated furnace at THERMOCOAX lab with helium flushing. The second out-of-pile test at JRC with a partly different set of thermocouples replicated the original test for comparison.Performance indicators such as thermal drift, insulation resistance and loop resistance were monitored. Through these long-term screening tests the effect of several parameters were investigated: niobium sleeves, bending, diameter, sheath composition as well as the chemical environment. SEM examinations were performed to analyze local damage (bending zone, sheath).The present paper describes the two tests, sums up data collected during these tests in terms of thermocouple behavior and describes further instrumentation testing work with fixed point mini cells for qualification under irradiation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.