Abstract

AbstractBasement formation pressures and temperatures were recorded from 1997 to 2017 in four sealed‐hole observatories in North Pond, an isolated ∼8 × 15 km sediment pond surrounded by thinly sedimented basement highs in 7–8 Ma crust west of the Mid‐Atlantic Ridge at ∼23°N. Two observatories are located ∼1 km from the southeastern edge of North Pond where sediment thickness is ∼90 m; the other two are ∼1 km from the northeastern edge where sediment thickness is 40–50 m. Sediments are up to 200 m thicker in the more central part of the pond. The borehole observations, along with upper basement temperatures estimated from seafloor heat flux measurements, provide constraints on the nature of low‐temperature ridge‐flank hydrothermal circulation in a setting that may be typical of sparsely sedimented crust formed at slow spreading ridges. Relative to seafloor pressures, basement formation pressures are modestly positive and increase with depth, except for a slight negative differential pressure in the shallowest 30–40 m in one northeastern hole. Although the observatory pairs are ∼6 km apart, the lateral pressure gradient in basement between them is very small. Formation pressure responses to seafloor tidal loading are consistent with high basement permeability that allows for vigorous low‐temperature circulation with low lateral pressure gradients. In contrast, there is significant lateral variability in upper basement temperatures, with highest values of ∼12.5°C beneath the thickly sedimented southwest section, lower values near the edges, and lowest values near the southeast edge. The results are key to assessing past and recent models for the circulation system.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call