Abstract

Stem cell regenerative medicine therapies have emerged as promising treatments for currently incurable diseases. A remaining challenge for cell therapies is the ability to track the migration and distribution of the transplanted cells in a long-term, noninvasive manner in vivo to assess their efficacy. This study develops a noninvasive, and high spatial resolution photoacoustic microscopy (PAM) and optical coherence tomography (OCT) imaging system for in vivo tracking of subretinally injected progenitor human retinal pigment epithelium cells (ARPE-19) labeled with chainlike gold nanoparticle (CGNP) clusters in RPE damage. CGNP provided significant PAM, OCT, and fluorescence signals to selectively track the migration of ARPE-19 cells in living rabbit eyes for 3 months. PAM and OCT imaging allow accurate anatomical information to determine the exact retinal layer in which the transplanted ARPE-19 cells are located which was confirmed by histology. This presents an efficient and advanced technology to visualize fundamental biological processes of cell therapies in complex in vivo environments in real time.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call