Abstract

Cryoplanation terraces (CTs) are large (3000–800 000 m2) erosional landforms found in upland periglacial environments. Two hypotheses for the formation of CTs are supported in contemporary literature: (1) CT formation is controlled primarily by geologic structure; and (2) CTs are climatically controlled through nivation, a suite of erosional processes associated with late-lying snowbanks. A persistent question in periglacial geomorphology is whether nivation can produce CT-scale landforms. This paper examines the unusual deglaciation history of “Frost Ridge” on the Cathedral Massif, northwestern British Columbia, to estimate long-term denudation attributable to nivation processes active since the last glacial maximum. Frost Ridge forms one flank of an east–west-oriented glacial valley. During deglaciation, marginal drainage created V-shaped erosional notches on both valley walls. Minimization of solar radiation on the steep north-facing wall (Frost Ridge) allowed snowbanks to accumulate and persist in the marginal drainage features and nivation processes to erode the slope. Today, several large nivation hollows (incipient CTs) are present near the summit of Frost Ridge, while the V-shaped marginal drainage features are preserved at lower elevations and on the opposite, south-facing valley wall. A high-resolution survey using an unmanned aerial vehicle (UAV) allowed volumes of marginal drainage and incipient terrace features to be compared. Based on this volumetric comparison, denudation rates are estimated to range from 4.2 to 125.8 mm/kyr, which are comparable with relatively short-term nivation rates reported from Antarctica and mid-latitude alpine periglacial areas.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call