Abstract
Experimental nitrogen (N) deposition generally inhibits decomposition and promotes carbon (C) accumulation in soils, but with substantial variation among studies. Differences in ecosystem properties could help explain this variability: N could have distinct effects on decomposition and soil C due to differences in vegetation characteristics (that is, root C inputs and chemistry) that influence microbial biomass or soil properties like pH that can affect organic matter stabilization. We used a 12-year N addition experiment to determine effects of sustained N addition on soil C pool sizes and cycling across different grassland, conifer and deciduous forest sites in Minnesota, USA, while controlling for soil type and climate. We conducted a year-long soil incubation, and fit one- and two-pool decay models to respiration data to identify C pool sizes and decay rates. Contrary to previous studies, we found no consistent effects of N on soil C across sites: soil C stocks, microbial respiration, soil C decay rates and pool sizes all showed no general response to N in these sandy soils. Nevertheless, microbial biomass, microbial respiration, and the root biomass C pool responses to N addition were highly correlated, suggesting that soil C responses were ultimately driven by fine root biomass C responses to N addition, which in turn affected microbial biomass. However, the inconsistent directional responses to N among sites with similar vegetation cover highlight that N addition effects can be site-specific and raise caution for broad extrapolation of results from individual systems to global models.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.