Abstract
2-Ethylhexyl diphenyl phosphate (EHDPP), ubiquitously monitored in environmental media, is highly bioaccumulative and may pose long-term risks, even after short-term exposure. In this investigation, larval zebrafish were exposed to 0.05, 0.5, and 5.0 μg/L EHDPP from 4 to 120 h postfertilization (hpf) to examine the long-term neurotoxicity effects of early exposure. Exposure to 5.0 μg/L EHDPP yielded hyperactive locomotor behavior, which was characterized by increased swimming speed, larger turning angles, and heightened sensitivity to light-dark stimulation. The predicted targets of EHDPP (top 100 potential macromolecules) were primarily associated with brain diseases like Alzheimer's disease (AD). Comparisons of differentially expressed genes (DEGs) from AD patients (GSE48350) and RNA-seq data from EHDPP-exposed zebrafish confirmed consistently abnormal regulatory pathways. EHDPP's interaction with M1 and M5 muscarinic acetylcholine receptors likely disrupted calcium homeostasis, leading to mitochondrial dysfunction and neurotransmitter imbalance as well as abnormal locomotor behavior. Especially, 5.0 μg/L EHDPP exposure during early development (4-120 hpf) triggered early- and midstage AD-like symptoms in adulthood (180 dpf), characterized by cognitive confusion, aggression, blood-brain barrier disruption, and mitochondrial damage in brains. These findings provide deep insights into the long-term neurotoxicity effects and Alzheimer's disease risks of early EHDPP exposure at extremely low dosages.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.