Abstract
Children are much more susceptible to the neurotoxic effects of organophosphate (OP) pesticides and nerve agents than adults. OP poisoning in children leads to acute seizures and neuropsychiatric sequela, including the development of long-term disabilities and cognitive impairments. Despite these risks, there are few chronic rodent models that use pediatric OP exposure for studying neurodevelopmental consequences and interventions. Here, we investigated the protective effect of the neurosteroid ganaxolone (GX) on the long-term developmental impact of neonatal exposure to the OP compound, diisopropyl-fluorophosphate (DFP). Pediatric postnatal day-28 rats were acutely exposed to DFP, and at 3 and 10 months after exposure, they were evaluated using a series of cognitive and behavioral tests with or without the postexposure treatment of GX. Analysis of the neuropathology was performed after 10 months. DFP-exposed animals displayed significant long-term deficits in mood, anxiety, depression, and aggressive traits. In spatial and nonspatial cognitive tests, they displayed striking impairments in learning and memory. Analysis of brain sections showed significant loss of neuronal nuclei antigen(+) principal neurons, parvalbumin(+) inhibitory interneurons, and neurogenesis, along with increased astrogliosis, microglial neuroinflammation, and mossy fiber sprouting. These detrimental neuropathological changes are consistent with behavioral dysfunctions. In the neurosteroid GX-treated cohort, behavioral and cognitive deficits were significantly reduced and were associated with strong protection against long-term neuroinflammation and neurodegeneration. In conclusion, this pediatric model replicates the salient features of children exposed to OPs, and the protective outcomes from neurosteroid intervention support the viability of developing this strategy for mitigating the long-term effects of acute OP exposure in children. SIGNIFICANCE STATEMENT: An estimated 3 million organophosphate exposures occur annually worldwide, with children comprising over 30% of all victims. Our understanding of the neurodevelopmental consequences in children exposed to organophosphates is limited. Here, we investigated the long-term impact of neonatal exposure to diisopropyl-fluorophosphate in pediatric rats. Neurosteroid treatment protected against major deficits in behavior and memory and was well correlated with neuropathological changes. Overall, this pediatric model is helpful to screen novel therapies to mitigate long-term developmental deficits of organophosphate exposure.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: The Journal of pharmacology and experimental therapeutics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.