Abstract

The water content in the epidermis correlates with different pathologic states of the skin; thus its assessment can aid the diagnosis and monitoring of conditions such as inflammation, edema, burns, and skin cancer. A micromachined microwave near-field probe, operating from 90 to 106 GHz, which, in contrast to earlier used microwave probes, has a minimized sensing area of $0.6\,\,\text {mm} \times 0.5$ mm and an optimized sensing depth of 400 $\mu \text{m}$ in tissue, has been developed and technically characterized by the authors earlier. This letter reports on the long-term monitoring of sodium lauryl sulfate (SLS)-induced skin irritations with the micromachined microwave probe. Aqueous solutions with 1%, 2%, 5%, and 10% SLS were applied to the forearm of a volunteer for 24 h and microwave reflection measurements were taken before and during 11 days after the SLS application. For all SLS-treated spots the microwave absorption reached the highest levels of 4 to 7 days after SLS application and afterward converged toward baseline levels again. The observed biphasic progression of the microwave reflection signal agrees well with trends from the literature for capacitance measurements and for epidermal thickness and signal attenuation in optical coherence tomography after SLS exposure. The measurements indicate that the microwave probe is very suitable to determine changes in the water content in the epidermis and can aid in the diagnosis of pathologic conditions including skin cancer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call