Abstract

This paper presents a study of the hydraulic response of an infinite unsaturated slope exposed to a perturbation of the ordinary seasonal climatic cycle. The ground flow is modelled via a simplified one-dimensional finite difference scheme by decomposing the two-dimensional slope seepage into antisymmetric and symmetric parts. The numerical scheme incorporates two distinct hysteretic and non-hysteretic soil water retention laws, whose parameters have been selected after a preliminary sensitivity analysis. Results indicate that, in the hysteretic case, the “memory” of the perturbation takes a long time to fade, and the ordinary soil saturation cycle is only restored after several years of normal weather. Instead, in the non-hysteretic case, the recovery of the ordinary saturation regime is almost immediate after the perturbation. In contrast with the markedly different predictions of degree of saturation, both hysteretic and non-hysteretic slope models predict virtually identical evolutions of negative pore water pressures, with an almost immediate restoration of the ordinary cycle after the perturbation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.