Abstract

AbstractThe vertebrate glucocorticoid stress response is an important mechanism facilitating pleiotropic phenotypic adjustments for coping with environmental change and optimizing fitness. Although circulating glucocorticoid hormones are mediators of plasticity that individuals can adjust rapidly in response to environmental challenges, they are also shaped by ecological selection. It remains unclear, however, how environmental variation on different timescales influences glucocorticoids. Here, we use an intraspecific comparative approach to determine how variation in precipitation on different timescales (months, years, decades) shapes distinct components of the glucocorticoid response. We sampled superb starlings (Lamprotornis superbus) at eight sites across Kenya in multiple years that differed in precipitation. Among-population variation in baseline glucocorticoids was shaped by both short- and long-term precipitation, whereas variation in stress-induced levels was poorly explained by precipitation on any timescale. Adrenal sensitivity, quantified via adrenocorticotropic hormone injections, was shaped by long-term precipitation and was highest in unpredictable environments. Together, these results suggest that variation in glucocorticoids can be best explained by environmental variation at timescales that extend beyond the lives of individuals, although baseline glucocorticoids also reflect short-term environmental conditions. Patterns of long-term precipitation may represent a microevolutionary selective pressure shaping the endocrine stress axis across populations and influencing how individuals cope with environmental change.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.