Abstract

Localised or pitting corrosion can be detrimental for steel pipes and containment structures, since wall perforation may cause system failure. Herein maximum pit depth quantification and its development with time are considered for samples taken from longitudinal welds on 33-year-old tubulars exposed in Newcastle Harbour. Relationships between pit depth and material metallurgy and corrosion properties were investigated by means of standard macro-etching, rest potential and zero resistance ammetry techniques. It is considered that the observed results are the result of the lack of homogeneity at the corrosion interface caused by differences in grain size, grain structure and the potential for pitting to occur preferentially along boundaries. The results are compared to measurements for longitudinal welds obtained previously on samples of API X56 Spec 5L pipe exposed in similar waters for up to 3·5 years, showing a reasonable degree of consistency between the two sets of data. The reasons for this are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call